
April 2005 www.stsc.hill.af.mil 13

Project estimating is formidable from
the start – especially during/before

the requirements discovery process. Poor
requirements lead to poor estimates and
poor schedules. Subsequently, changes are
difficult to assess when the requirements
are poor. Sometimes a service request
ends up deferred to the next release due to
confusion about requirements – and the
next release fares no better. This leads to
classic project failure – over budget and
behind schedule – similar to the two-
thirds of projects cited in the 2003
Standish Group’s Chaos report. [1]

Estimators can start the process by
determining how big and how complex is
the user problem, how hard it will be to
build, and how much confidence is need-
ed in the estimate. Most often, however,
we do not estimate this way. We start with
a seemingly arbitrary end date and then
count backwards to get the schedule, cost,
and resources that can fit into the time-
frame. Called date-driven estimating by
author Steve McConnell, it is the most
commonly used method. [2]

To complicate matters, date-driven
estimates are usually task-based and rely on
the experience and mental models of team
members or cost estimators. Problems
emerge on new projects with new technol-
ogy or new subject matter where there is
no prior experience from which to draw.
An estimator is forced to seek other data
on which to base an estimate.

Sophisticated parametric-based esti-
mating models such as COCOMO II,
SLIM, and SEER/SEM serve to provide
the missing data with databases or proven
industry equations. In most cases, howev-
er, some form of project size is a required
input variable, along with other variables
covering functional, quality, design, and
technical drivers. Because any estimate is
only as accurate as its least accurate input
variable, we should not be surprised when
projects exceed estimates for cost, sched-
ule and duration. The Standish Group
report [1] proclaimed a mere 33 percent of
projects a success; however, this is double
the results a mere decade ago.

As one of the first authors to recog-
nize that software engineering differs
from traditional engineering, David Card
stated, “Engineering projects usually can
wait until after design to provide an esti-
mate, while software engineering requires
an estimate before design” [3].

In the author’s experience, software
projects can be even worse – some proj-
ects need estimates before requirements! If
we are to increase information technology
(IT) credibility, we need to figure out ways
to create auditable and reliable project esti-
mates from initial project realization all the
way through to project completion. One
of the best ways to do this is to augment
our current estimating method(s) with at
least one requirements-based estimate.
This additional approach serves to validate
or invalidate the other estimate(s) and
ensures that at least one method consid-
ered the size of the problem as an impor-
tant project estimating variable.

Requirements Demystified
Given that project requirements are the
source of 60 percent to 99 percent of
defects delivered into production [4], and
that project size based on requirements is
a key input driver for project estimates [5],
it makes sense to examine what can be
done to clarify and further exploit the dis-
covery of complete requirements early in
the project.

The requirements discovery and articu-
lation process should strive to maximize

the known requirements while managing to
minimize the unknowns. To clarify project
requirements, divide them into three types:
functional, non-functional, and technical
requirements, as outlined in the following
sections.

Functional Requirements
This type of requirements represents the
unit work processes performed or sup-
ported by the software, (e.g., software for
an altimeter records the ambient tempera-
ture). These requirements are part of the
users’1/customers’ responsibility to define,
even though they may abdicate the initial
specifications to the development team.
Functional requirements can be thought
of similar to a software floor plan – they
are independent of any design constraints
or technical implementation. Functional
requirements can be documented with use
cases and sized using functional size meas-
urement (function points).

Once the functional requirements are
sized, and other project requirements are
known (see non-functional and technical
requirements), cost estimates can be pre-
pared using a Project Cost Ratio for com-
parable completed projects (see Table 1).

Non-Functional Requirements
This type of requirements represents how
the software must perform once it is built.
Also referred to as quality requirements,
these requirements address the ilities: (suit-
ability, accuracy, interoperability, compli-

Creating Requirements-Based Estimates Before
Requirements Are Complete

Carol A. Dekkers
Quality Plus Technologies, Inc.

Despite advances in tools and techniques, it is interesting to note that on-time and on-budget projects account for a mere one-
third of projects today. While overly optimistic estimates are part of the problem, missing and incomplete requirements, and
poor estimating methods share the blame. Accurate estimating is further challenged when customers demand estimates before
requirements development begins.

Figure 1: The Three Types of Project Requirements

Metric Units Equation

Project Cost
Ratio (completed
projects)

$/Function Point
(FP)

Project Cost Rate =
(Total Hours x Hourly Cost) + Other Costs
 Project Functional Size

Annual Support
Cost Ratio

Actual Support
Costs per 1,000 FP
(or Full Time
Resources/Application)

Support Cost Ratio =
(Yearly Support Hours x Hourly Cost) + Other Costs

Application Functional Size

Repair Cost
Ratio

$/FP (or per fix) Repair Cost Ratio =
(Repair Hours x Hourly Cost)
Functional Size of Repair

DDDeeevvveeelll ooopppeeerrr ///
CCCooonnnssstttrrruuuccctttiii ooonnn
RRReeeqqquuuiii rrr eeemmmeeennntttsss

111... FFF uuunnnccctttiiiooonnnaaalll (((UUUssseeerrr)))
RRReeeqqquuuiii rrr eeemmmeeennntttsss

222... NNNooonnn---FFF uuunnnccctttiiiooonnnaaalll
(((UUUssseeerrr))) RRReeeqqquuuiii rrr eeemmmeeennntttsss

333... TTTeeeccchhhnnniiicccaaalll (((BBBuuuiii lll ddd)))
RRReeeqqquuuiii rrr eeemmmeeennntttsss

SSSooofff tttwwwaaarrreee PPPrrrooojjj eeecccttt
RRReeeqqquuuiii rrr eeemmmeeennntttsss

UUUssseeerrr DDDrrr iii vvveeennn
RRReeeqqquuuiii rrr eeemmmeeennntttsss

Table 1: Project Requirements Size-Based Estimating Equations

ance, security, reliability, efficiency, main-
tainability, portability, and quality in use) as
described by ISO [International Organiza-
tion for Standardization] standards in [7]
and performance criteria.

More often, non-functional require-
ments are discussed only at a high level
and are often found scattered throughout
various requirements documents. Using a
construction analogy, the non-functional
requirements are like the contracted specifica-
tions for software and outline the necessity
for data accuracy (e.g., trajectory systems),
response time (e.g., service level agree-
ments), security (e.g., encryption), per-
formance (e.g., 24x7 operation with repli-
cated databases to prevent data loss), etc.

Technical (Build) Requirements
These project requirements are defined by
how the software will be built to satisfy the
functional and non-functional require-
ments. Technical requirements include the
physical implementation characteristics of
the project and include, for example, pro-
gramming language, Computer-Aided
Software Engineering (CASE) or other
tools, methods, work-breakdown struc-
ture, type of project, etc. In practice, it is
the technical requirements that document
the design, and with the functional and
non-functional requirements give rise to
project specifics like Gantt charts, devel-
opment methodology, reuse, etc.
Technical requirements are to software as
plumbing is to building construction.

All three types of project requirements are
necessary to do a realistic project estimate.
Functional size measurement strictly pertains only
to the size of the software’s functional user
requirements.

Modern software development ap-
proaches such as use cases and agile devel-
opment attempt to categorize and keep
these three types of requirements distinct
and separate. Unfortunately in a manner
similar to the contractor who only has a
hammer and everything looks like a nail,

some software developers cannot over-
come the need to insert technical require-
ments into modern method deliverables
such as use cases and agile user stories.

Estimating Challenges
The more information you know before
making an estimate, the better the estimate
should be. However, estimating faces chal-
lenges even with skilled estimators and
high-quality teams. A few challenges
include these: accuracy of input values
(size, complexity, technical requirements,
etc); availability of input variables; applica-
bility of historical databases; complete-
ness of the requirements (including func-
tional, non-functional, and technical);
tasks to be included; and risk factors. In
spite of the challenges, cost estimators do
produce estimates of duration, cost, and
effort, which are turned into project
schedules. Estimates made early in the
development life cycle face large variations
because of uncertainty. Estimates based
on guessed input values are unreliable, yet
many managers treat them as predictive
project forecasts. We can alleviate this
problem with a few guidelines: Frame the
guesstimate (an estimated guess) as preliminary.
When providing a guesstimate, frame it as
a range of values (e.g., based on assump-
tions, the project could cost $250,000 to
$600,000). Giving a range instead of an
exact answer provides greater traceability.

Overly optimistic estimates create
project failures because dates pass and
slip, functionality gets reduced, project
budgets get surpassed, and quality suffers
(i.e., testing time is cut out). Remember
that an estimate is only as good as its least
reliable input variable; garbage in equals
garbage out. While it is the American way
for faster, better, and cheaper solutions,
sometimes they are so compelling that
management will attempt the impossible
through the overly optimistic estimate.
The result is that the project will only be
done right the second time around [4].

Estimating During or Before
Requirements
When asked to perform an overall project
estimate using a requirements-based esti-
mating method, the first step is to decide
how many separate (sub)projects are
included within the scope of the overall
business project if more than one soft-
ware application is involved. If there is
only one software application involved,
this step can be skipped. If there is more
than one application to be enhanced or
developed, each usually has its own set of
requirements and will need its own
(sub)project estimate2. (Usually, each
application that undergoes new develop-
ment or enhancement will be classified
and estimated as its own (sub)project, and
the overall project effort, cost, and dura-
tion can be calculated as combined values.
Consider a single overall project with sev-
eral subprojects: (a) new development
project, and (b) two enhancement projects
(see Figure 1). Each one would be esti-
mated separately, and the results added
together. Additionally, the entire project
might also require an estimate for the inte-
gration testing of the component subpro-
ject pieces. The overall project estimate
for cost and effort would be the sum of
the subproject estimates, while the dura-
tion would depend on task dependencies
between and within subprojects3.

The second step is to identify and esti-
mate the size or impact of the three types
of project requirements for each of the
subprojects. Consider the fictional sub-
project 1.

Functional Requirements
The requirements for what the software
must do might not be defined in enough
detail to do functional sizing, but could be
approximated [5]. If even one functional
component (such as number of entities) is
known, an approximation can be done.
Several approximation methods are out-
lined in [6]. Documenting the assumptions
about the entities helps to substantiate the
estimate4. If there is enough data, the
functional size approximation can be
more accurate and use more accurate tech-
niques. For the two subprojects, each
would be assessed based on an approxi-
mation of how many function points
would be added (new functions as in sub-
project 3), modified (changed or renovat-
ed functions), or removed. The functional
size of the subproject is the sum of new
plus modified plus removed functions.

Non-Functional Requirements
Assessment of the ilities is based on a

14 CROSSTALK The Journal of Defense Software Engineering April 2005

Cost Estimation

Figure 1: Sample Project Components

Creating Requirements-Based Estimates Before Requirements Are Complete

April 2005 www.stsc.hill.af.mil 15

comparison to similar projects or a value
adjustment factor (which is part of a siz-
ing method such as IFPUG). If the non-
functional requirements are unknown, it is
best to overestimate their impact as usual-
ly they turn out to be more complex than
anticipated (e.g., security requirements).
Even if estimators and software develop-
ers intuitively know that estimates are too
low, customers and user managers have an
insatiable optimism that maybe, just this
once it might come true. Time and time
again, overly optimistic estimates become
self-fulfilling prophecies as dates slip,
functionality is reduced, and project budg-
ets are surpassed.

Barry Boehm remarked on the impact
of non-functional requirements: “A tiny
change in NFRs [non-functional require-
ments] can cause a huge change in the
cost.” Boehm cited the tripling of a $10
million project to $30 million when the
response time (of a NFR) went from four
seconds to one. [8]. It is important to doc-
ument assumptions for NFRs, especially if
project complexity is likely to increase.

Technical Requirements
IT project teams often use a standard suite
of development tools and technologies.
The technical requirements are usually the
least risk prone of the three requirement
types – particularly technologies and sub-
ject matter are standard. For major
changes in technology, further care must
be taken to assess this requirements area.

Results should be documented along
with the method used, the date, and
source documents used for the estimate so
that guesstimates and estimates become
more traceable and auditable.

Need an estimate for a project that has
few or no known input variables? Are
there options for an estimator? He or she
could attempt these tactics: (a) refuse to
do an estimate, (b) delay the estimate
repeatedly until requirements are at least
partially done, (c) provide a wild guess
(which is common), (d) try to find similar
completed projects within your own envi-
ronment and use their actual values, (e)
cite professional ethics and hide out, or (f)
(this is the preferred method) document
assumptions and use them together with
the estimate (guesstimate) to substantiate
the estimation results.

What Can You Do to Improve
Project Estimates?
Project estimating can be more auditable
and more realistic by applying some of the
aforementioned practices. Document as
many of your assumptions about the proj-

ect as you can; revise them and the esti-
mate according to the same/updated
assumptions later. Separate, document,
and assess (approximation or count) the
project into subprojects according to
application; address each set of require-
ments clearly; and objectively split them
into the three types: functional, non-func-
tional, and technical. Use an established
requirements-based estimating tool or
benchmarking database such as COCO-
MO II or the International Software
Benchmarking Standards Group with
proven track records for your environ-
ment. Label results as preliminary. Teach
customers about the estimating process.
Educate them that an estimate too early in
the life cycle cannot remain fixed through-
out the project, nor can it be accurate.
And finally, combine the subproject esti-
mates into a single overall project esti-
mate. Present the guesstimate as a range
(when information is premature or miss-
ing) with a level of accuracy commensu-
rate with what is known about the project
at the time (e.g., rounded to the closest
$100,000).u

References
1. The Standish Group. “Latest Standish

Group CHAOS Report Shows Project
Success Rates Have Improved by 50
Percent.” Press Release, 25 Mar. 2003
The Standish Group, <www.standish
group.com/press/article.php?id=2>.

2. McConnell, Steve. “After the Gold
Rush.” 2004 Systems and Software
Technology Conference, Salt Lake
City, UT, 19-22 Apr. 2004.

3. Card, David N. The Role of Measure-
ment in Software Engineering. July
1998.

4. U.S. Army. Insight. Summer, 2003.
5. Hill, Peter R., Ed. Practical Project

Estimation. 2nd ed. International
Software Benchmarking Standards
Group, 2005 <www. isbsg.org>.

6. International Organization for Stan-
dardization/International Electro-
technical Commission. ISO/IEC
14143-1:1998 Information Technol-
ogy – Software Measurement –
Functional Size Measurement – Part 1:
Definition of Concepts. ISO/IEC
<www.jtcl-sc7.org>.

7. ISO/IEC. ISO/IEC 9126 Series of
Standards for Measuring Software
Quality. ISO/IEC <www.jtcl-sc7.
org>.

8. Robertson, Suzanne and James.
Preface. Requirements-Led Project
Management – Discovering David’s
Slingshot. By Barry Boehm. Pearson
Education, 2005.

Notes
1. Users refers to any person, thing, other

application, other software, hardware,
etc., outside the boundary of the soft-
ware that has the requirement to send
or receive data from the software [6].

2. Even if requirements are collectively
listed in a single document, specific
requirements will pertain to a specific
software application. It is important to
divide the requirements among various
applications within the overall project
to facilitate subproject estimates.

3. The overall duration may not be the
summation of the subproject dura-
tions; some tasks may proceed concur-
rently while others may have prece-
dence in other subprojects before they
can commence.

4. The one file model or rule of 31 is an
approximation technique whereby
each identified entity is assumed to
have add, change, delete, query, out-
put, and storage function. Using
IFPUG FP average values, the total is
31 FP for each entity. For three enti-
ties, this equates to 93 FP – or roughly
in the range of 100 FP.

About the Author

Carol A. Dekkers is
president of Quality Plus
Technologies, Inc., a
management consulting
firm that specializes in
helping companies im-

prove their software and systems success.
She is a past chair and founder of the
American Testing Board, a former presi-
dent of the International Function Point
Users Group, and is active in the Project
Management Institute, the American
Society for Quality, and the International
Organization for Standardization. She is a
Certified Management Consultant, a
Certified Function Point Specialist, a pro-
fessional engineer (Canada), an Infor-
mation Systems Professional, and an
International Software Testing Qualifica-
tions Testing Board Certified Tester –
Foundation Level.

Quality Plus Technologies, Inc.
8430 Egret LN
Seminole, FL 33776
Phone: (727) 393-6048
Fax: (727) 393-8732
E-mail: dekkers@qualityplus

tech.com

